

Welcome to Johnny Can Encrypt’s documentation!

This is a Python module providing encryption and decryption operations based on OpenPGP. It
uses sequoia-pgp [https://sequoia-pgp.org] project for the actual operations. This does not
depend on the existing gpg tooling.

Contents:

	Installing for usage in a virtualenvironment

	Building Johnny Can Encrypt for development
	How to run the tests?

	How to run the smartcard related tests?

	Introduction to johnnycanencrypt
	The KeyStore

	KeyStore path for the applicaitons which can run per user

	Encrypting and decrypting some bytes for a given fingerprint

	Verify Tor Browser download using the signature and public key

	API Documentation

	The internal johnnycanencrypt module written in Rust

	Smartcard access
	Smartcard API

Indices and tables

	Index

	Module Index

	Search Page

Installing for usage in a virtualenvironment

Building this module requires Rust’s nightly toolchain. You can install it following
the instructions from rustup.rs [https://rustup.rs].

You will need libnettle and libnettle-dev & clang, libpcsclite1, libpcsclite-dev (on Debian/Ubuntu) and nettle & nettle-dev pcsc-lite-devel & clang packages in Fedora.

sudo apt install -y python3-dev libnettle8 nettle-dev libhogweed6 python3-pip python3-venv clang libpcsclite-dev libpcsclite1 libclang-9-dev

sudo dnf install nettle clang clang-devel nettle-devel python3-devel pcsc-lite-devel

Then you can just use pip module to install in your virtualenvironment.

python -m pip install johnnycanencrypt

Building Johnny Can Encrypt for development

After you have the dependencies mentioned above, you can follow the steps below to build a wheel.

python3 -m venv .venv
source .venv/bin/activate
python -m pip install -r requirements-dev.txt
python setup.py develop

Only to build and test locally, you should execute

python setup.py develop

To build a wheel use the following command.

python setup.py bdist_wheel

How to run the tests?

After you did the python setup.py develop as mentioned above, execute the following command.

python -m pytest -vvv

How to run the smartcard related tests?

Warning

The following test will reset any Yubikey or smartcard connected to the system. Use it carefully.

All of these tests are right now kept as a Python script, and requires Yubikey series 5 hardware to test.

python smartcardtests/smartcards.py

When asked, please make sure that only the test smartcard is conneccted to the system, and then type “Yes”, without quotes.

Introduction to johnnycanencrypt

Johnnycanencrypt provides only a few selected operations from the OpenPGP spec.
If you need more and better granular access to the operations, this may not be
the module for you.

The module has 2 parts, one high level API, which can be directly accessed via importing the module. There is another
internal module with the same name (which is native in Rust), and has all the low level functions and classes.

We will import the module as jce.

>>> import johnnycanencrypt as jce

The KeyStore

The module interacts over a KeyStore object, which points to a directory path
on the system. Inside of the directory, it will create a jce.db sqlite3
database if missing. Below is an example where we are creating a keystore in an
empty directory at “/var/lib/myapplication/keys”, and then we will import a few
keys in there. For our example, we will use the keys from our tests directory.

>>> ks = jce.KeyStore("/var/lib/myapplication/keys")
>>> ks.import_key("tests/files/store/secret.asc")
<Key fingerprint=F4F388BBB194925AE301F844C52B42177857DD79 type=SECRET>
>>> ks.import_key("tests/files/store/pgp_keys.asc")
<Key fingerprint=A85FF376759C994A8A1168D8D8219C8C43F6C5E1 type=PUBLIC>
>>> ks.import_key("tests/files/store/public.asc")
<Key fingerprint=F4F388BBB194925AE301F844C52B42177857DD79 type=PUBLIC>

Now, if we check the directory from the shell, we will find the keys imported there.

❯ ls -l /var/lib/myapplication/keys
.rw-rw-r--@ 9.5k user 6 Oct 18:48 jce.db

Note

This keystore directory is very much application specific. As a developer you should choose which directory on the system you will use
as the key store. SecureDrop [https://securedrop.org] uses /var/lib/securedrop/store as their key storage (via gpg’s python binding).

Warning

This module does not handle keys still using sha1 or md5 for hash algorithms. If you are using any such old key, please generate new key
and use them along wtih the module. This function [https://docs.sequoia-pgp.org/sequoia_openpgp/policy/struct.StandardPolicy.html#method.reject_hash_at] explains in some details why.

KeyStore path for the applicaitons which can run per user

If you are writing a desktop application or any other tool which can have per user configuration, you should look into
the base dir spec [https://specifications.freedesktop.org/basedir-spec/latest/]. If your application name is myapplication, then the store
path can be like: $XDG_DATA_HOME/myapplication.

Encrypting and decrypting some bytes for a given fingerprint

>>> ks = jce.KeyStore("tests/files/store")
>>> key = ks.get_key("F4F388BBB194925AE301F844C52B42177857DD79")
>>> enc = ks.encrypt(key, "Sequoia is amazing.")
>>> print(enc[:27])
b'-----BEGIN PGP MESSAGE-----'
>>> text = ks.decrypt(key, enc, "redhat")
>>> print(text)
b'Sequoia is amazing.'

Verify Tor Browser download using the signature and public key

In this example we will download the Tor Browser 10.0, and the signature and the public key using wget, and then verify via our module.

curl -s -O https://dist.torproject.org/torbrowser/12.0.5/tor-browser-linux64-12.0.5_ALL.tar.xz
curl -s -O https://dist.torproject.org/torbrowser/12.0.5/tor-browser-linux64-12.0.5_ALL.tar.xz.asc
KEYURL=https://openpgpkey.torproject.org/.well-known/openpgpkey/torproject.org/hu/kounek7zrdx745qydx6p59t9mqjpuhdf
curl -s -o kounek7zrdx745qydx6p59t9mqjpuhdf.pub $KEYURL

Now let us import the key and verify.

import tempfile
import johnnycanencrypt as jce

filename = "tor-browser-linux64-12.0.5_ALL.tar.xz"
signame = "tor-browser-linux64-12.0.5_ALL.tar.xz.asc"

with tempfile.TemporaryDirectory() as tmpdir:
 ks = jce.KeyStore(tmpdir)
 torkey = ks.import_key("kounek7zrdx745qydx6p59t9mqjpuhdf.pub")
 if ks.verify_file_detached(torkey, filename, signame):
 print("Verified.")
 else:
 print("Verification failed.")

API Documentation

For the rest of the documentation we assume that you imported the module as following.

>>> import johnnycanencrypt as jce

	
class KeyStore(path: str) → None:

	Returns a KeyStore object. This is the primary class of the module, and
all high level usage is available via methods of this class. It takes a
path to the directory where it stores/reads the keys. Please make sure
that only the user has read/write capability to this path.

The keys are represented inside the directory in the jce.db sqlite3
database. Every time there is any change in the DB schema, we
automatically create a temporary database called jce_upgrade.db in
the same path, and then reimport all the keys, and rename the file and
continue with the steps. This is one time operation when we do a new
release.

You can check for existance of any fingerprint (str) or Key object in the via in opertor.

>>> ks = jce.KeyStore("/var/lib/myamazingapp")
>>> "HEXFINGERPRINT" in ks

	
add_userid(key: Key, userid: str, password: str) → Key:

	Returns the updated key with a new userid. If you need to upload the key to the https://keys.openpgp.org, then remember to
have to an email address in the user id.

	
certify_key(key: Union[Key, str], otherkey: Union[Key, str], uids: List[str], sig_type: SignatureType = SignatureType.GenericCertification, password: str = "", oncard=False) → Key:

	This method signs the given list of userid(s) in otherkey using the primary key of the key, by default it signs as SignatureType.GenericCertification, but you can do other types too. If the primary key is on a smartcard, then pass oncard=True, default value is False.

	
create_key(password: str, uids: Optional[Union[List[str], str]] = [], ciphersuite: Cipher = Cipher.RSA4k, creation: Optional[datetime.datetime] = None, expiration: Optional[datetime.datetime] = None, subkeys_expiration= False, whichkeys = 7, can_primary_sign: bool = False, can_primary_expire=False) → Key:

	Returns the public part of the newly created Key in the store
directory. You can mention ciphersuite Cipher as
Cipher.RSA2k or Cipher.RSA4k, or Cipher.Cv25519, while
Cipher.RSA4k is the default. You can also provide
datetime.datetime objects for creation time and expiration
time. By default it will use the current time as creation time,
and keys don’t expire. You can provide a string for uid, or multiple
strings using a List for multiple uids. It can also create a key without
any uids.

If you want the primary key to have signing capability, then pass can_primary_sign=True.

You can pass whichkeys = 1 to generate only the encryption subkey, 2 for signing, 4 for authentication.
By default it will create all three subkeys (7).

>>> ks = jce.KeyStore("/var/lib/myamazingapp")
>>> newkey = ks.create_key("supersecretpassphrasefromdiceware", "test key1 <email@example.com>", jce.KeyType.RSA4k)

	
encrypt(keys, data, outputfile="", armor=True) → bytes:

	Encrypts the given data (either as str or bytes) via the list of keys or fingerprints. You can also just pass one single key or
fingerprint. If you provide outputfile argument with a path, the encrypted output will be written to that path. By default the
encrypted output is armored, but by passing armor=False you can get raw bytes returned.

>>> ks = jce.KeyStore("tests/files/store")
>>> key1 = ks.get_key("6AC6957E2589CB8B5221F6508ADA07F0A0F7BA99")
>>> key2 = ks.get_key("BB2D3F20233286371C3123D5209940B9669ED621")
>>> encrypted = ks.encrypt([key1, key2], "Encrypted this string")
>>> assert encrypted.startswith(b"-----BEGIN PGP MESSAGE-----\n")

	
encrypt_file(keys, inputfilepath: Union[str,bytes,BinaryIO], outputfilepath: Union[str, bytes], armor=True) → bool:

	Returns True after encrypting the given inputfilepath to the outputfilepath. The inputfilepath could be str, or bytes, or a opened file handler for bytes.

>>> ks = jce.KeyStore("tests/files/store")
>>> key1 = ks.get_key("6AC6957E2589CB8B5221F6508ADA07F0A0F7BA99")
>>> key2 = ks.get_key("BB2D3F20233286371C3123D5209940B9669ED621")
>>> assert ks.encrypt_file([key1, key2], "/tmp/data.txt", "/tmp/data.txt.asc")

	
decrypt(key, data, password="") → bytes:

	Returns the decrypted bytes from the given data and the secret key. You can either pass fingerprint or a secret Key object
as the key argument.

>>> plain_bytes = ks.decrypt(secret_key2, encrypted_bytes, password=password)

	
decrypt_file(key, encrypted_path: Union[str,bytes,BinaryIO], outputfile, password=""):

	Decryptes the given encrypted_path and wrties the output to the outputfile path (both given as str or bytes). In the encrypted_path can be an opened file handler to read
binary data.

>>> ks.decrypt_file(secret_key1, "/tmp/data.txt.asc", "/tmp/plain.txt", password=password)
>>> with open("/tmp/hello.gpg", "rb") as fobj:
... ks.decrypt_file(secret_key1, fobj, "/tmp/plain.txt", password=password)

	
delete_key(key: Union[str, Key]) → None:

	Deletes the key based on the fingerprint or the Key object from the KeyStore.

>>> ks.delete_key("BB2D3F20233286371C3123D5209940B9669ED621")

Note

Raises KeyNotFoundError if the key is not available in the KeyStore.

	
details() → Tuple[int, int]:

	Returns a tuple containing the total number of public and secret keys available in the KeyStore.

	
fetch_key_by_email(email: str) → Key:

	Searches and retrives a key at https://keys.openpgp.org based on the given email address. Current limit is 1 email address can be
searched only once per minute. The key is also stored in the local keystore. Raises KeyNotFoundError if the key is not found.

	
fetch_key_by_fingerprint(fingerprint: str) → Key:

	Searches and retrives a key at https://keys.openpgp.org based on the given fingerprint, one can search 6 times per minute. Raises
KeyNotFoundError if the key is not found.

	
get_all_keys() → List[Key]:

	Returns a list of all the keys in the KeyStore.

	
get_key(fingerprint: str = "") → Key:

	Returns a key from the keystore based on the fingerprint.
Raises KeyNotFoundError if no such key available in the keystore.

	
get_keys(qvalue="", qtype="email") → List[Key]:

	Returns a list of keys based on either email or name or value of the UIDs or URIs in the key (searchs on one of the terms first come basis).
qtype can be one of the email, value, name, uri.

>>> keys_via_names = ks.get_keys(qvalue="test key", qtype="value")
>>> keys_via_email = ks.get_keys(qvalue="email@example.com")

	
get_keys_by_keyid(keyid: str) → List[Key]:

	Returns a list of keys matching with the keyids, first directly
checks the master keys and then subkeys. Raises
KeyNotFoundError in case no such keyid is found on the
store.

	
import_key(keypath: str) → Key:

	Imports a pgp key file from a path on the system.
The method returns the newly import Key object to the caller.

>>> key = ks.import_key("tests/files/store/public.asc")
>>> print(key)

	
revoke_userid(key: Key, userid: str, pass: str) → Key:

	Revokes the given user id from the given secret key and returns the updated key.

	
update_expiry_in_subkeys(key: Key, subkeys: List[str], expiration: datetime, password: str) → Key:

	Updates the expiry time for the given subkeys (as a list of fingerprints) for the given secret key.

	
sign_detached(key, data, password) → str:

	Signs the given data (can be either str or bytes) using the secret key. Returns the armored signature string.

	
sign_file_detached(key, filepath, password, write=False) → str:

	Returns the armored signature of the filepath argument using the secret key (either fingerprint or secret Key object).
If you pass write=True, it will also write the armored signature to a file named as filepath.asc

	
verify(key, data: Union[str, bytes], signature:Optional[str]) → bool:

	Verifies the given data using the public key, and signature string if given, returns True or False as result.

	
verify_file_detached(key: Union[str, Key], filepath: Union[str, bytes], signature_path) → bool:

	Verifies the given filepath using the public key, and signature string, returns True or False as result.

	
verify_file(key, filepath) → bool:

	Verifies the given signed filepath using the public key, returns True or False as result.

	
verify_and_extract_bytes(key: Union[str, Key], data: Union[str, bytes]) → bytes:

	Verifies the given signed data using the public key, returns the actual data as bytes.

	
verify_and_extract_file(self, key: Union[str, Key], filepath: Union[str, bytes], output: Union[str, bytes]) → bool::

	Verifies the given signed filepath and writes the actual data in output.

	
class Cipher → Cipher:

	This is the enum class to metion the type of ciphersuite to be used while creating a new key. Possible values are Cipher.RSA4k,
Cipher.RSA2k, Cipher.Cv25519.

	
class Key(keyvalue: bytes, fingerprint: str, uids: Dict[str, str] = {}, keytype: KeyType=KeyType.PUBLIC, expirationtime=None, creationtime=None, othervalues={}, oncard: str = "", can_primary_sign: bool = False, primary_on_card: str = "") → Key:

	Returns a Key object and fingerprint. The keytype enum KeyType.

You can compare two key object with == operator.

For most of the use cases you don’t have to create one manually, but you can retrive one from the KeyStore.

	
keyvalue

	keyvalue holds the actual key as bytes.

	
fingerprint

	The string representation of the fingerprint

	
uids

	A dictionary holding all uids from the key, also stores related certification of the given uids.

	
creationtime

	The datetime.datetime object mentioning when the key was created.

	
expirationtime

	The datetime.datetime object mentioning when the key will expire or None otherwise.

	
get_pub_key() → str:

	Returns the armored version of the public key as string.

	
keyid

	The keyid of the master key

	
primary_on_card

	A string containing the smartcard ID, this will be populated only after sync_smartcard call in the KeyStore.

	
oncard

	A string containing the smartcard ID if the card contains any of the subkeys, this will be populated only after sync_smartcard call in the KeyStore.

	
othervalues

	A dictionary containing subkeys’s keyids and fingerprints.

	
can_primary_sign

	A boolean value telling if the primary key has signing capability or not.

	
available_subkeys() → Tuple[bool, bool, bool]:

	Returns a tuple with 3 boolean values as (got_enc, got_sign, got_auth) to tell us which all subkeys are available.
The subkeys will not be expired keys (based on the date of the system) and also not revoked.

	
class KeyType → KeyType:

	Enum class to mark if a key is public or private. Possible values are KeyType.PUBLIC and KeyType.SECRET.

	
class SignatureType → SignatureType:

	Enum class to mark the kind of certification one can do on another key. Possible values are SignatureType.GenericCertification,
SignatureType.PersonaCertification, SignatureType.CasualCertification, SignatureType.PositiveCertification.

	
get_card_touch_policies() → List[TouchMode]

	Returns a list of Enum values from TouchMode. To be used to determine the touch capabilities of the smartcard.
Remember to verify this list before calling set_keyslot_touch_policy().

The internal johnnycanencrypt module written in Rust

You can access the low level functions or Johnny class by the following way:

>>> from johnnycanencrypt import johnnycanencrypt as jce

In most cases you don’t have to use these, but if you have a reason, feel free to use them.

	
encrypt_bytes_to_file(publickeys, data, output, armor=False)

	This function takes a list of public key file paths, and encrypts the given data in bytes to an output
file. You can also pass boolen flag armor for armored output in the file.

>>> jce.encrypt_bytes_to_file(["tests/files/public.asc", "tests/files/hellopublic.asc"], b"Hello clear text", b"/tmp/encrypted_text.asc", armor=True)

Note

Use this function if you have to encrypt for multiple recipents.

	
get_ssh_pubkey(certdata, comment: Optional[str]) → str:

	This function takes a public key and optional comment and then provides a string representing the authentication subkey to be used inside of SSH.

	
enable_otp_usb() → bool

	This function enables OTP application in the Yubikey.

	
disable_otp_usb() → bool

	This function disables OTP application in the Yubikey.

	
get_key_cipher_details(certdata: bytes) → List[tuple[str, str, int]]

	This function takes the key data as bytes, and returns a list of tuples containing (fingerprint, public key algorithm, bits size).

>>> rjce.get_key_cipher_details(key.keyvalue)
[('F4F388BBB194925AE301F844C52B42177857DD79', 'EdDSA', 256), ('102EBD23BD5D2D340FBBDE0ADFD1C55926648D2F', 'EdDSA', 256), ('85B67F139D835FA56BA703DB5A7A1560D46ED4F6', 'ECDH', 256)]

	
class Johnny(filepath)

	It creates an object of type Johnny, you can provide path to the either public key, or the private key based on the operation
you want to do.

	
encrypt_bytes(data: bytes, armor=False)

	This method encrypts the given bytes and returns the encrypted bytes. If you pass armor=True to the method, then the
returned value will be ascii armored bytes.

>>> j = jce.Johnny("tests/files/public.asc")
>>> enc = j.encrypt_bytes(b"mysecret", armor=True)

	
encrypt_file(inputfile: bytes, output: bytes, armor=False)

	This method encrypts the given inputfile and writes the raw encrypted bytes to the output path. If you pass armor=True to the method, then the
output file will be written as ascii armored.

>>> j = jce.Johnny("tests/files/public.asc")
>>> enc = j.encrypt_file(b"blueleaks.tar.gz", b"notblueleaks.tar.gz.pgp", armor=True)

	
decrypt_bytes(data: bytes, password: str)

	Decrypts the given bytes based on the secret key and given password. If you try to decrypt while just using the public key,
then it will raise AttributeError.

>>> jp = jce.Johnny("tests/files/secret.asc")
>>> result = jp.decrypt_bytes(enc, "redhat")

	
decrypt_file(inputfile: bytes, output: bytes, password: str)

	Decrypts the inputfile path (in bytes) and wrties the decrypted data to the output file. Both the filepaths to be given as bytes.

>>> jp = jce.Johnny("tests/files/secret.asc")
>>> result = jp.decrypt_file(b"notblueleaks.tar.gz.pgp", "blueleaks.tar.gz", "redhat")

	
sign_bytes_detached(data: bytes, pasword: str)

	Signs the given bytes and returns the detached ascii armored signature as bytes.

>>> j = jce.Johnny("tests/files/secret.asc")
>>> signature = j.sign_bytes_detached(b"mysecret", "redhat")

Note

Remember to save the signature somewhere on disk.

	
verify_bytes(data: bytes)

	Verifies if the signature is correct for the given signed data (as bytes). Returns True or False.

>>> j = jce.Johnny("tests/files/public.asc")
>>> j.verify_bytes(encrypted_bytes)

	
verify_and_extract_bytes(data: bytes)

	Verifies if the signature is correct for the given signed data (as bytes). Returns the actual message in Bytes.

>>> j = jce.Johnny("tests/files/public.asc")
>>> j.verify_and_extract_bytes(encrypted_bytes)

	
verify_bytes_detached(data: bytes, signature: bytes)

	Verifies if the signature is correct for the given data (as bytes). Returns True or False.

>>> j = jce.Johnny("tests/files/public.asc")
>>> j.verify_bytes(encrypted_bytes, signature)

	
verify_file(filepath: bytes)

	Verifies if the signature is correct for the given signed file (path as bytes). Returns True or False.

>>> j = jce.Johnny("tests/files/public.asc")
>>> j.verify_file(encrypted_bytes, signature)

	
verify_and_extract_file(filepath: bytes, output: bytes)

	Verifies and extracts the message from the signed file, return True in case of a success.

	
verify_file_detached(filepath: bytes, signature: bytes)

	Verifies if the signature is correct for the given signed file (path as bytes). Returns True or False.

>>> j = jce.Johnny("tests/files/public.asc")
>>> j.verify_file_detached(encrypted_bytes, signature)

Smartcard access

Johnnycanencrypt provides limilted smardcard access for OpenPGP operations.
This is built on top of the 3.4.1 spec [https://gnupg.org/ftp/specs/OpenPGP-smart-card-application-3.4.1.pdf].

We only tested the code against Yubikey 5 [https://www.yubico.com/products/yubikey-5-overview/] and Yubikey 4 series.

Note

Remember the Cv25519 keys will only work on Yubikey 5 series.

The part of the code is written in Rust, so you will have to import the internal johnnycanencrypt module.

import johnnycanencrypt.johnnycanencrypt as rjce

Smartcard API

	
class KeySlot

	
These are the available KeySlots in a card.

	
Signature

	

	
Encryption

	

	
Authentication

	

	
Attestation

	

	
class TouchMode

	
The different touch mode for a key.

	
Off

	

	
On

	

	
Fixed

	

	
Cached

	

	
CachedFixed

	

	
set_keyslot_touch_policy(adminpin: bytes, slot: KeySlot, mode: TouchMode) → bool:

	Sets the given TouchMode to the slot. Returns False if it is already set as Fixed.

Important

Remember to verify the available touch modes via get_card_touch_policies() first.

	
get_keyslot_touch_policy(slot: KeySlot) → TouchMode:

	Returns the available TouchMode of the given slot in the smartcard.

	
get_card_version() → tuple[int, int, int]:

	Returns a tuple containing the Yubikey firmware version. Example: (5,2,7) or (4,3,1).

	
reset_yubikey() → bool:

	Returns True after successfully resetting a Yubikey.

Warning

This is a dangerous function as it will destroy all the data in the card. Use it carefully.

	
get_card_details() → Dict[str, Any]:

	Returns a dictionary containing various card information in a dictionary.

	Available keys:

	
	serial_number, the serial number of the card

	url, for the public key url.

	name, the card holder’s name, surname<<<firstname

	PW1, number of user pin retries left

	RC, number of reset pin retries left

	PW2, number of admin pin retries left

	signatures, total number signatures made by the card

	sig_f Signature key fingerprint

	enc_f encryption key fingerprint

	auth_f authentication key fingerprint

	
change_user_pin(adminpin: bytes, newpin: bytes) → bool:

	Changes the user pin to the given pin. The pin must be 6 chars or more. Requires current admin pin of the card.

	
change_admin_pin(adminpin: bytes, newadminpin: bytes) → bool:

	Changes the admin pin to the given pin. The pin must be 8 chars or more. Requires current admin pin of the card.

	
decrypt_bytes_on_card(certdata: bytes, data: bytes, pin:bytes): -> bytes

	Decryptes the given encrypted bytes using the smartcard. You will have to pass
the public key as the certdata argument.

	
decrypt_file_on_card(certdata: bytes, filepath: bytes, output: bytes, pin:bytes): -> None

	Decryptes the given filepath and writes the output to the given output path using the smartcard. You will have to pass
the public key as the certdata argument.

	
decrypt_filehandler_on_card(certdata: bytes, fh: typing.IO, output: bytes, pin:bytes): -> None

	Decryptes the given opened fh and writes the output to the given output path using the smartcard. You will have to pass
the public key as the certdata argument.

Note

This function first reads the whole file and then decrypts it. So, try to use the decrypt_file_on_card function instead.

	
is_smartcard_connected() → bool:

	Returns True if it can find a Yubikey attached to the system, or else returns False.

	
set_name(name: bytes, pin: bytes) → bool:

	Sets the name of the card holder (in bytes) in surname<<firstname format. The length must be less than 39 in size. Requires admin pin in bytes.

	
set_url(url: bytes, pin: bytes) → bool:

	Sets the public key URL on the card. Requires the admin pin in bytes.

	
sign_bytes_detached_on_card(certdata: bytes, data: bytes, pin: bytes) → str:

	Signs the given bytes on the card, and returns the detached signature as base64 encoded string. Also requires the public key in certdata argument.

	
sign_bytes_on_card(certdata: bytes, data: bytes, pin: bytes) → bytes:

	Signs the given bytes on the card, and returns the signed bytes. Also requires the public key in certdata argument.

	
sign_file_detached_on_card(certdata: bytes, filepath: bytes, pin: bytes) → str:

	Signs the given filepath and returns the detached signature as base64 encoded string. Also requires the the public in certdata argument.

	
sign_file_on_card(certdata: bytes, filepath: bytes, output: bytes, pin: bytes, cleartext: bool) → bool:

	Signs the given filepath and writes to output. Also requires the the public in certdata argument. For things like email, you would want to sign them in clear text.

	
upload_to_smartcard(certdata: bytes, pin: bytes, password: str, whichkeys: int) → bool:

	Uploads the marked (via whichkeys argument) subkeys to the smartcard. Takes the whole certdata (from Key.keyvalue) in bytes, and the admin pin of the card, the password (as string) of
the key. You can choose which subkeys to be uploaded via the following values of whichkeys argument:

	1 for encryption

	2 for signing

	4 for authentication

And then you can add them up for the required combination. For example 7 means you want to upload all 3 kinds of subkeys, but 3 means only encryption and signing subkeys will be loaded into the smartcard.

	3 for both encryption and signing

	5 for encryption and authentication

	6 for signing and authentication

	7 for all 3 different subkeys

import johnnycanencrypt as jce
import johnnycanencrypt.johnnycanencrypt as rjce

ks = jce.KeyStore("/tmp/demo")
By default it creates all 3 subkeys
key = ks.create_key("redhat", ["First Last <fl@example.com>",], jce.Cipher.Cv25519)
print(key.fingerprint)
We want to upload only the encryption and signing subkeys to the smartcard
result = rjce.upload_to_smartcard(key.keyvalue, b"12345678", "redhat", 3)
print(result)

	
upload_primary_to_smartcard(certdata: bytes, pin: bytes, password: str, whichslot: int) → bool:

	Uploads the primary key to the smartcard in the given slot. Takes the whole certdata (from Key.keyvalue) in bytes, and the admin pin of the card, the password (as string) of
the key. You can choose which subkeys to be uploaded via the following values of whichslot argument:

	2 for signing slot

	4 for authentication slot

import johnnycanencrypt as jce
import johnnycanencrypt.johnnycanencrypt as rjce

ks = jce.KeyStore("/tmp/demo")
Create a primary key with signing capability & an encryption subkey
key = ks.create_key("redhat", ["First Last <fl@example.com>",], jce.Cipher.Cv25519, whichkeys=1, can_primary_sign=True)
print(key.fingerprint)
We want to upload first the primary key to the signing slot of the card
result = rjce.upload_primary_to_smartcard(key.keyvalue, b"12345678", "redhat", whichslot=2)
We want to upload only the encryption subkey to the smartcard
result = rjce.upload_to_smartcard(key.keyvalue, b"12345678", "redhat", 1)
print(result)

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_userid() (KeyStore method)

 	Attestation (KeySlot attribute)

 	
 	Authentication (KeySlot attribute)

 	available_subkeys() (Key method)

C

 	
 	Cached (TouchMode attribute)

 	CachedFixed (TouchMode attribute)

 	can_primary_sign (Key attribute)

 	certify_key() (KeyStore method)

 	
 	change_admin_pin() (built-in function)

 	change_user_pin() (built-in function)

 	Cipher (built-in class)

 	create_key() (KeyStore method)

 	creationtime (Key attribute)

D

 	
 	decrypt() (KeyStore method)

 	decrypt_bytes() (Johnny method)

 	decrypt_file() (Johnny method)

 	
 	delete_key() (KeyStore method)

 	details() (KeyStore method)

 	disable_otp_usb() (built-in function)

E

 	
 	enable_otp_usb() (built-in function)

 	encrypt() (KeyStore method)

 	encrypt_bytes() (Johnny method)

 	encrypt_bytes_to_file() (built-in function)

 	
 	encrypt_file() (Johnny method)

 	(KeyStore method)

 	Encryption (KeySlot attribute)

 	expirationtime (Key attribute)

F

 	
 	fetch_key_by_email() (KeyStore method)

 	fetch_key_by_fingerprint() (KeyStore method)

 	
 	fingerprint (Key attribute)

 	Fixed (TouchMode attribute)

G

 	
 	get_all_keys() (KeyStore method)

 	get_card_details() (built-in function)

 	get_card_touch_policies() (built-in function)

 	get_card_version() (built-in function)

 	get_key() (KeyStore method)

 	
 	get_key_cipher_details() (built-in function)

 	get_keys() (KeyStore method)

 	get_keys_by_keyid() (KeyStore method)

 	get_keyslot_touch_policy() (built-in function)

 	get_pub_key() (Key method)

 	get_ssh_pubkey() (built-in function)

I

 	
 	import_key() (KeyStore method)

 	
 	is_smartcard_connected() (built-in function)

J

 	
 	Johnny (built-in class)

K

 	
 	Key (built-in class)

 	keyid (Key attribute)

 	KeySlot (built-in class)

 	
 	KeyStore (built-in class)

 	KeyType (built-in class)

 	keyvalue (Key attribute)

O

 	
 	Off (TouchMode attribute)

 	On (TouchMode attribute)

 	
 	oncard (Key attribute)

 	othervalues (Key attribute)

P

 	
 	primary_on_card (Key attribute)

R

 	
 	reset_yubikey() (built-in function)

 	
 	revoke_userid() (KeyStore method)

S

 	
 	set_keyslot_touch_policy() (built-in function)

 	set_name() (built-in function)

 	set_url() (built-in function)

 	sign_bytes_detached() (Johnny method)

 	sign_bytes_detached_on_card() (built-in function)

 	sign_bytes_on_card() (built-in function)

 	
 	sign_detached() (KeyStore method)

 	sign_file_detached() (KeyStore method)

 	sign_file_detached_on_card() (built-in function)

 	sign_file_on_card() (built-in function)

 	Signature (KeySlot attribute)

 	SignatureType (built-in class)

T

 	
 	TouchMode (built-in class)

U

 	
 	uids (Key attribute)

 	update_expiry_in_subkeys() (KeyStore method)

 	
 	upload_primary_to_smartcard() (built-in function)

 	upload_to_smartcard() (built-in function)

V

 	
 	verify() (KeyStore method)

 	verify_and_extract_bytes() (Johnny method)

 	(KeyStore method)

 	verify_and_extract_file() (Johnny method)

 	(KeyStore method)

 	
 	verify_bytes() (Johnny method)

 	verify_bytes_detached() (Johnny method)

 	verify_file() (Johnny method)

 	(KeyStore method)

 	verify_file_detached() (Johnny method)

 	(KeyStore method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Johnny Can Encrypt’s documentation!

 		
 Installing for usage in a virtualenvironment

 		
 Building Johnny Can Encrypt for development

 		
 How to run the tests?

 		
 How to run the smartcard related tests?

 		
 Introduction to johnnycanencrypt

 		
 The KeyStore

 		
 KeyStore path for the applicaitons which can run per user

 		
 Encrypting and decrypting some bytes for a given fingerprint

 		
 Verify Tor Browser download using the signature and public key

 		
 API Documentation

 		
 The internal johnnycanencrypt module written in Rust

 		
 Smartcard access

 		
 Smartcard API

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

